

SPECIFICATIONS

CDDX30 SERIES

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25mm (0.01") unless otherwised noted.
- 3. Specifications are subject to change without notice.

RoHS

PART NUMBER DESCRIPTION

Part Number	Chip Material	Color of Emission	Lens Type	Description
CDDA30R1W	GaAsP	Red	White Segment	Common Anode
CDDC30R1W	GaAsP	Red	White Segment	Common Cathode
CDDA30RR1W	AlGaAs	Super Red	White Segment	Common Anode
CDDC30RR1W	AlGaAs	Super Red	White Segment	Common Cathode
CDDA30Y1W	GaAsP	Yellow	White Segment	Common Anode
CDDC30Y1W	GaAsP	Yellow	White Segment	Common Cathode
CDDA30G1W	GaP	Green	White Segment	Common Anode
CDDC30G1W	GaP	Green	White Segment	Common Cathode
CDDA30B1W	GaN	Blue	White Segment	Common Anode
CDDC30B1W	GaN	Blue	White Segment	Common Cathode

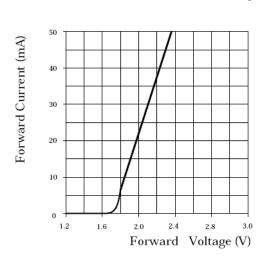
OPTICAL-ELECTRICAL CHARACTERISTICS

(TA=25°C)

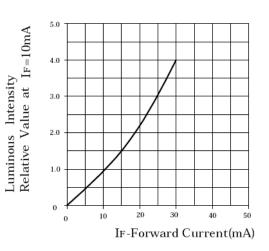
	Wave- length (nm)	Absolute Maximum			Electro-Optical Characteristics						
Part Number		Δλ	PD	IAF	IPF	VF (V)			IF	Ιν (μcd)	
		nm	mW	mA	(Peak)	Min	Тур	Max	(Rec)	Min	Тур
CDDA30R1W	625	45	75	30	100	1.7	1.85	2.5	10	800	1900
CDDC30R1W	625	45	75	30	100	1.7	1.85	2.5	10	800	1900
CDDA30RR1W	640	20	72	20	100	1.6	1.75	2.4	10	3000	8000
CDDC30RR1W	640	20	72	20	100	1.6	1.75	2.4	10	3000	8000
CDDA30Y1W	588	35	75	30	100	1.7	2.1	2.8	10	480	1200
CDDC30Y1W	588	35	75	30	100	1.7	2.1	2.8	10	480	1200
CDDA30G1W	568	30	65	30	100	1.7	2.1	2.8	10	1200	3000
CDDC30G1W	568	30	65	30	100	1.7	2.1	2.8	10	1200	3000
CDDA30B1W	470	30	120	30	100	3.0	3.5	4.0	10	480	2000
CDDC30B1W	470	30	120	30	100	3.0	3.5	4.0	10	480	2000

ABSOLUTE MAXIMUM RATINGS

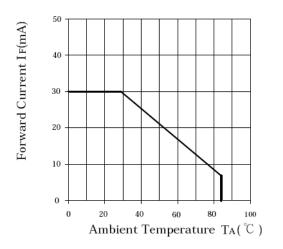
Reverse Voltage	5V	Spectral Line half-width (λ)	nm
Reverse Current (Vr = 5V)	100µA	Power Dissipation (PD)	mW
Operating Temperature	-40°C~+85°C	Peak Forward Current (Duty 1/10, @ KHz)	mA
Storage Temperature	-40°C~+85°C	Recommended Operation Current (IF Rec)	mA
Soldering Temperature	250C~260C for 3 sec.	Average Luminous Intensity (IF=10)	μA



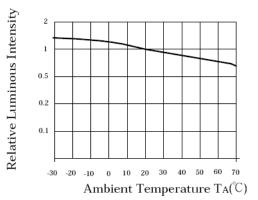
ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com


(TA=25°C)

OPTICAL CHARACTERISTIC CURVES - RED

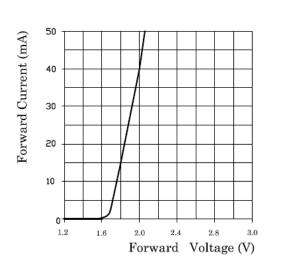


Forward Current vs. Forward Voltage

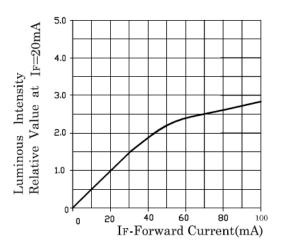


Relative Intensity vs. Forward Current

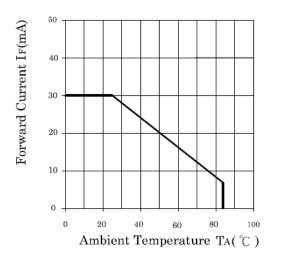
Forward Current vs. Ambient Temperature


Luminous Intensity vs. Ambient Temperature

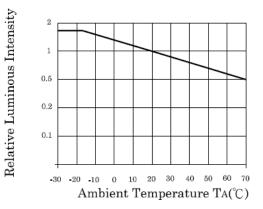




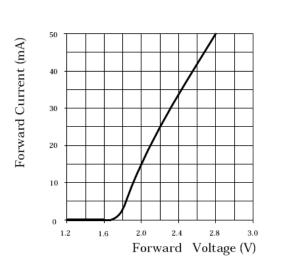
OPTICAL CHARACTERISTIC CURVES - SUPER RED

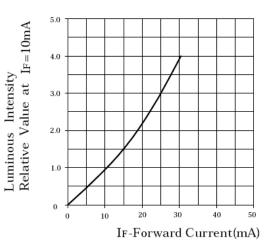


Forward Current vs. Forward Voltage

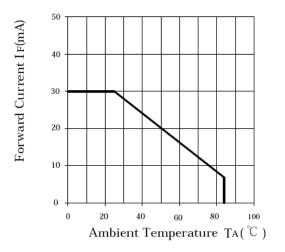


Forward Current vs. Ambient Temperature

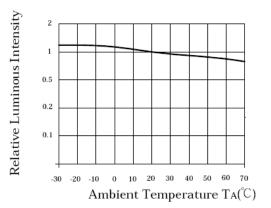

Luminous Intensity vs. Ambient Temperature



OPTICAL CHARACTERISTIC CURVES - YELLOW

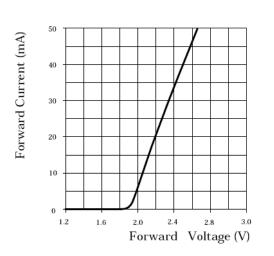


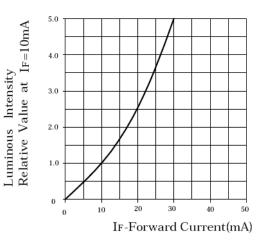
Forward Current vs. Forward Voltage



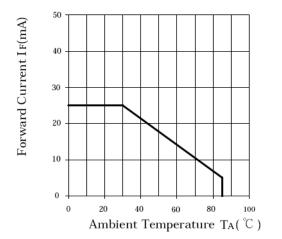
Relative Intensity vs. Forward Current

Forward Current vs. Ambient Temperature

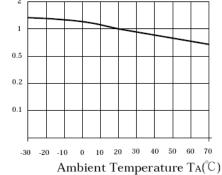

Luminous Intensity vs. Ambient Temperature



OPTICAL CHARACTERISTIC CURVES - GREEN

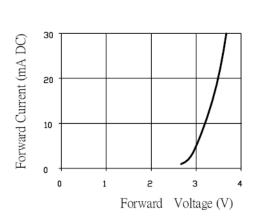


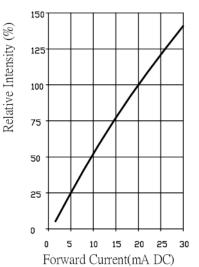
Forward Current vs. Forward Voltage


Relative Intensity vs. Forward Current

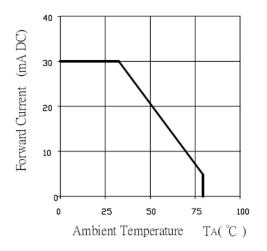
Luminous Intensity vs. Ambient Temperature

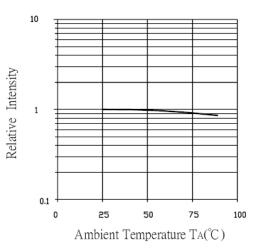
Forward Current vs. Ambient Temperature


Relative Luminous Intensity



OPTICAL CHARACTERISTIC CURVES - BLUE


Forward Current vs. Forward Voltage


Relative Intensity vs. Forward Current

Torvard Current(Im TDO)

Forward Current vs. Ambient Temperature

Luminous Intensity vs. Ambient Temperature

SOLDERING CONDITIONS - DISPLAY

- * Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended.
- * Recommended soldering conditions

Dip Soldering			
Pre-Heat	100 °C Max		
Pre-Heat Time	60 Second Max		
Solder Bath Temperature	260 °C Max		
Dippng Time	5 Second Max		
Dipping Position	No lower than 3mm from the base of the epoxy		

Hand Soldering				
	3mm Series	Others		
Temperature Soldering Time Position	300 °C Max 3 Second Max No closer than 3mm from the base of the epoxy	350 °C Max 3 Second Max No closer than 3mm from the base of the epoxy		

- * Do not apply any stress to the lead. Particularly when heated.
- * The LED must not be repositioned after soldering.
- * After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- * Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused by the PC board warping or from the clinching and cutting of the leadframes. When it is absolutely necessary, the LEDs may be mounted in this fashion, but, the user will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- * When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- * Cut the LED leadframes at room temperature. Cutting the leadframes at high temperature may cause LED failure.

